
The effect of anisotropy on the ground-state magnetic ordering of the spin-1 quantum

J1
XXZ–J2

XXZ model on the square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 415213

(http://iopscience.iop.org/0953-8984/20/41/415213)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 15:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 415213 (11pp) doi:10.1088/0953-8984/20/41/415213

The effect of anisotropy on the
ground-state magnetic ordering of the
spin-1 quantum JXXZ

1 –JXXZ
2 model on

the square lattice
R F Bishop1,2, P H Y Li1,2, R Darradi3, J Richter3

and C E Campbell2

1 School of Physics and Astronomy, Schuster Building, The University of Manchester,
Manchester M13 9PL, UK
2 School of Physics and Astronomy, University of Minnesota, 116 Church Street SE,
Minneapolis, MN 55455, USA
3 Institut für Theoretische Physik, Universität Magdeburg, 39016 Magdeburg, Germany

Received 28 May 2008, in final form 25 August 2008
Published 16 September 2008
Online at stacks.iop.org/JPhysCM/20/415213

Abstract
We study the zero-temperature phase diagram of the J X X Z

1 –J X X Z
2 Heisenberg model for spin-1

particles on an infinite square lattice interacting via nearest-neighbour (J1 ≡ 1) and
next-nearest-neighbour (J2 > 0) bonds. The two bonds have the same X X Z -type anisotropy in
spin space. The effects on the quasiclassical Néel-ordered and collinear stripe-ordered states of
varying the anisotropy parameter � are investigated using the coupled cluster method carried
out up to high orders. By contrast with the case for spin- 1

2 particles studied previously, no
intermediate disordered phase between the Néel and collinear stripe phases, for any value of the
frustration J2/J1, for either the z-aligned (� > 1) or xy-planar-aligned (0 � � < 1) states, is
predicted here. The quantum phase transition is determined as first order for all values of J2/J1

and �. The position of the phase boundary J c
2 (�) is determined accurately. It is observed to

deviate most from its classical position J c
2 = 1

2 (for all values of � > 0) at the Heisenberg
isotropic point (� = 1), where J c

2 (1) = 0.55 ± 0.01. By contrast, at the XY isotropic point
(� = 0), we find J c

2 (0) = 0.50 ± 0.01. In the Ising limit (� → ∞), J c
2 → 0.5 as expected.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a recent paper [1] we have used the coupled cluster method
(CCM) [2–4] to study the influence of spin anisotropy on the
ground-state (gs) magnetic ordering of an anisotropic version
(namely, the J X X Z

1 –J X X Z
2 model) of the well-known J1–J2

model on the infinite two-dimensional (2D) square lattice,
described below, for particles with spin quantum number
s = 1

2 . In the present paper we further the investigation of
the J X X Z

1 –J X X Z
2 model by replacing the spin- 1

2 particles by
particles with s = 1.

The main purpose of the previous paper was to examine
carefully the role of spin anisotropy in tuning the quantum
fluctuations that play such a key role in determining the

quantum phase diagram of the pure (spin-isotropic) J1–J2

model that has become an archetypal model for discussing
the subtle interplay between the effects due to quantum
fluctuations and frustration, as discussed below. While
increasing the spin quantum number s is, of course, expected to
reduce the effects of quantum fluctuations, new and unexpected
phenomena may also arise. Thus, a well-known example
of such new behaviour emerging when s is increased is the
appearance of the gapped Haldane phase [5] in s = 1 one-
dimensional (1D) chains, which is not present in their s = 1

2
counterparts.

The basic (spin-isotropic) J1–J2 model with nearest-
neighbour (NN) and next-nearest-neighbour (NNN) antifer-
romagnetic exchange interactions, of strengths J1 and J2
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respectively, has been extensively studied both theoreti-
cally [6–20] and experimentally [21–24]. Many of the earlier
studies were motivated, at least in part, by the hope of shedding
light on the possible link between antiferromagnetism and the
onset of superconductivity at high temperature in the doped
cuprate materials whose undoped precursors are seemingly
well described by the s = 1

2 version of the J1–J2 model
on the square lattice in two dimensions [8, 25–27]. The
recent discovery of several other quasi-2D materials that are
realizations of the J1–J2 model, has only served to extend the
theoretical interest in the model.

Some of the actual magnetic compounds that can be well
described by the s = 1

2 J1–J2 model are La2CuO4 [27] for small
values of J2/J1, and Li2VOSiO4 and Li2VOGeO4 [21, 22]
for large values of J2/J1. Other such materials include
the compounds VOMoO4 [23] and Pb2VO(PO4)2 [24]. The
compound VOMoO4 is interesting because its exchange
couplings appear to be more than an order of magnitude
larger than those of Li2VOSiO4, even though the structures
of the two compounds are closely related. Similarly, the
compound Pb2VO(PO4)2 also has a structure closely related to
that of Li2VOSiO4, but it appears to have a ferromagnetic NN
exchange coupling (J1 < 0) frustrated by an antiferromagnetic
NNN exchange coupling (J2 > 0), with |J2/J1| ≈ 1.5. By
contrast, although all of the other compounds mentioned above
are also examples of quasi-2D frustrated spin- 1

2 magnets, they
have NN and NNN exchanges that are both antiferromagnetic.

For the past few decades, a great deal of attention has
also been devoted to magnetic materials with spin-1 ions,
such as the linear chain systems including CsNiCl3 [28]
with a weak axial anisotropy, CsFeBr3 [29] with a
strong planar anisotropy and the complex materials NENP
(Ni(C2H8N2)2NO2(ClO4)) [30] with a weak planar anisotropy
and NENC (Ni(C2H8N2)2Ni(CN4)) [31] with a strong planar
anisotropy; as well as the 2D Heisenberg antiferromagnet
K2NiF4 [32]. The spin gaps observed in CsNiCl3 and
NENP are believed to be examples of the integer-spin gap
behaviour predicted by Haldane [5]; whereas half-odd-integer
spin systems are gapless. Another new spin-gapped material is
the 2D triangular lattice antiferromagnet NiGa2S4 [33] which,
it has been argued [34, 35], may be a ‘spin nematic’ [36]. It is
clear, therefore, that the theoretical study of 2D spin-1 quantum
magnets is worthy of pursuit.

In this context we note the recent discovery of
superconductivity with a transition temperature at Tc ≈ 26 K
in the layered iron-based compound LaOFeAs, when doped by
partial substitution of the oxygen atoms by fluorine atoms [37],
La[O1−xFx ]FeAs, with x ≈ 0.05–0.11. This has been
followed by the rapid discovery of superconductivity at even
higher values of Tc (� 50 K) in a broad class of similar
doped quaternary oxypnictide compounds. Enormous interest
has thereby been engendered in this class of materials. Of
particular relevance to the present work are the very recent
first-principles calculations [38] showing that the undoped
parent precursor material LaOFeAs is well described by the
spin-1 J1–J2 model on the square lattice with J1 > 0, J2 > 0,
and J2/J1 ≈ 2. Broadly similar conclusions have also been
reached by other authors [39].

Many of the above quasi-2D magnetic materials, and
many others like them, display interesting gs phases,
often with subtle quantum phase transitions between them.
Generically, the interplay between reduced dimensionality,
competing interactions and strong quantum fluctuations,
seems to generate a number of new states of condensed
matter with orderings that differ from the usual states
of quasiclassical long-range order (LRO). Thus, for high-
temperature superconductivity, for example, Anderson [25]
has suggested that quantum spin fluctuations and frustration
due to doping could lead to the collapse of the 2D Néel-
ordered antiferromagnetic phase present at zero doping, and
that this could be a mechanism that drives the superconducting
behaviour. This, and many similar experimental observations
for other magnetic materials of reduced dimensionality,
has intensified the study of order–disorder quantum phase
transitions. Thus, low-dimensional quantum antiferromagnets
have attracted much recent attention as model systems in which
strong quantum fluctuations might be able to destroy magnetic
LRO in the ground state (GS). In the present paper we consider
a system of N → ∞ spin-1 particles on a spatially isotropic
2D square lattice.

The isotropic Heisenberg antiferromagnet with only
nearest-neighbour (NN) bonds, all of equal strength (J1 > 0),
exhibits magnetic LRO at zero temperature on such bipartite
lattices as the square lattice considered here. A key mechanism
that can then serve to destroy the LRO for such systems (with
a given lattice and spins of a given spin quantum number s)
is the introduction of competing or frustrating bonds on top of
the NN bonds. The interested reader is referred to [40, 41] for
a more detailed discussion of 2D spin systems in general.

In this context, and as we have already noted above,
an archetypal frustrated model of the above type that has
attracted much theoretical attention in recent years is the 2D
J1–J2 model on a square lattice with both NN and NNN
antiferromagnetic interactions, with strength J1 > 0 and
J2 > 0 respectively. The NN bonds J1 > 0 promote Néel
antiferromagnetic order, while the NNN bonds J2 > 0 act
to frustrate or compete with this order. All such frustrated
quantum magnets continue to be of great theoretical interest
because of the possible spin-liquid and other such novel
magnetically-disordered phases that they can exhibit (and see,
e.g., [42–44]).

The properties of the s = 1/2 J1–J2 model on the 2D
square lattice are well understood in the limits when J2 = 0
or J1 = 0. For the case when J2 = 0, and the classical
GS is perfectly Néel-ordered, the quantum fluctuations are not
sufficiently strong enough to destroy the Néel LRO, although
the staggered magnetization is reduced to about 61% of its
classical value. The opposite limit of large J2 is a classic
example [8] of the phenomenon of order by disorder [45, 46].
Thus, in the case where J1 → 0 with J2 �= 0 and fixed,
the two sublattices each order antiferromagnetically at the
classical level, but in directions which are independent of each
other. This degeneracy is lifted by quantum fluctuations and
the GS becomes magnetically ordered collinearly as a stripe
phase consisting of successive alternating rows (or columns)
of parallel spins. It is by now also widely accepted that the
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s = 1/2 J1–J2 model exhibits the above two quasiclassical
antiferromagnetic phases with LRO at small and at large J2

separated by an intermediate quantum paramagnetic phase
without magnetic LRO in the parameter region J c1

2 < J2 < J c2
2

where J c1
2 ≈ 0.4J1 and J c2

2 ≈ 0.6J1. The GS at low J2 < J c1
2

exhibits Néel-ordered magnetic LRO (with a wavevector Q =
(π, π)), whereas the GS at large J2 > J c2

2 exhibits collinear
stripe-ordered magnetic LRO (with a wavevector Q = (π, 0)

or Q = (0, π)).
Given the key role played by quantum fluctuations in

determining the gs structure of frustrated magnets, it is clearly
of central interest to focus special attention on the various
means by which we may vary or ‘tune’ them. Clearly, as we
have already noted, an increase in the spin quantum number
s is expected to decrease their strength. Thus, for example,
for the simple case of the isotropic Heisenberg model on the
square lattice with NN bonds all of the same strength, whereas
the quantum fluctuations reduce the perfect Néel ordering
in the classical case (i.e., s → ∞) so that the staggered
magnetization is only about 61% of its classical value for the
s = 1

2 case as noted above, the corresponding reduction in
the s = 1 case is less, namely to about 80% of the classical
value (and see [47] and references cited therein). One of the
goals of the present paper is to investigate similarly the effect
of increasing s for the archetypal J1–J2 model on the 2D
square lattice. In order to do so it is convenient to consider
at the same time any other means to ‘tune’ the quantum
fluctuations. In particular, we note that besides changing
s or the dimensionality and lattice type of the system, and
apart from varying the relative strengths of the competing
exchange interactions, another key mechanism to tune the
quantum fluctuations is the introduction of anisotropy, either
in real space [48–53] or in spin space [54–57], into the existing
exchange bonds.

Turning first to the case of anisotropy in real (crystal
lattice) space, we note that Nersesyan and Tsvelik [48] have
recently introduced and studied an interesting generalization
of the pure J1–J2 model for the s = 1

2 case in order to
investigate the effects of spatial anisotropy on the quantum
fluctuations in the model. This extended model, the so-called
J1–J ′

1–J2 model, has been further studied by other groups for
both the s = 1

2 [49–52] and the s = 1 [53] cases. This
generalization of the 2D J1–J2 model introduces a spatial
anisotropy on the square lattice by allowing the NN bonds to
have different strengths J1 and J ′

1 in the two orthogonal spatial
lattice dimensions, while keeping all of the NNN bonds across
the diagonals to have the same strength J2. In previous work
of our own [52, 53] on this J1–J ′

1–J2 model we studied the
effect of the coupling J ′

1 on the semiclassical Néel-ordered
and stripe-ordered phases. For the s = 1

2 case, we found
that the quantum critical points for both of these phases with
LRO increase as the coupling ratio J ′

1/J1 is increased, and an
intermediate phase with no magnetic LRO only emerges when
J ′

1/J1 � 0.6, with strong indications of a quantum triple point
at J ′

1/J1 ≈ 0.60, J2/J1 ≈ 0.33. For J ′
1/J1 = 1, the results

agree with the previously known results of the J1–J2 model
described above.

By contrast, for the s = 1 case, we found no evidence
for an intermediate phase between the Néel and stripe states,

as compared with all previous results for the corresponding
s = 1

2 case. However, for the s = 1 case we found instead
strong evidence for a quantum tricritical point at J ′

1/J1 ≈
0.66, J2/J1 ≈ 0.35, where a line of second-order phase
transitions between the quasiclassical Néel-ordered and stripe-
ordered phases (for J ′

1/J1 � 0.66) meets a line of first-order
phase transitions between the same two states (for J ′

1/J1 �
0.66). For J ′

1/J1 = 1 the results obviously reproduce those of
the usual spin-1 J1–J2 model, for which J c

2 /J1 ≈ 0.55 ± 0.01.
Finally, we turn to the main subject of interest in this

paper, namely to further the study of the 2D spin-1 J1–J2

model on the square lattice by introducing anisotropy in spin
space. While the influence of the spin anisotropy on the
s = 1

2 J1–J2 model on the square lattice has been studied by
various groups [54–57], including ourselves [1], relatively little
is known for the s = 1 case.

Our aim here is to further the study of the J X X Z
1 –J X X Z

2
model for the s = 1 case, by making use of the coupled
cluster method (CCM) carried out to high orders by making
use of supercomputing resources. The CCM (see [2–4] and
references cited therein) is one of the most powerful and most
universally applicable of all known ab initio techniques of
modern microscopic quantum many-body theory. It is also
one of the most accurate methods available at attainable levels
of computational implementation. We note, in the present
context, that the CCM is a particularly effective tool for
studying highly frustrated quantum magnets, where such other
numerical methods as the quantum Monte Carlo method and
the exact diagonalization method are often severely limited in
practice, e.g., by the ‘minus-sign problem’ for the former case,
and the very small sizes of the spin systems that can be handled
in practice with available computing resources for the latter.
This is especially true for spin systems with spin quantum
number s > 1

2 , as are of interest here. The CCM has been
applied successfully on many previous occasions to calculate
the ground-state and excited-state properties of a diverse array
of quantum spin systems [1, 4, 12, 47, 52, 53, 57–71].

2. The model

Exactly as for the s = 1
2 case that we studied earlier [1], the

s = 1 J1–J2 Heisenberg model employed here has two kinds of
exchange bonds, namely the NN J1 bonds along both the row
and the column directions of the square lattice, and the NNN
J2 bonds along the diagonals of the squares. The model is then
generalized by including an anisotropy in spin space in both
types of bonds. The anisotropy parameter � is assumed to be
the same in both exchange terms, thus producing the so-called
J X X Z

1 –J X X Z
2 model, with a Hamiltonian given by

H = J1

∑

〈i, j〉
(sx

i sx
j + sy

i s y
j + �sz

i sz
j )

+ J2

∑

〈〈i,k〉〉
(sx

i sx
k + sy

i s y
k + �sz

i sz
k ), (1)

where the sums over 〈i, j〉 and 〈〈i, k〉〉 run over all NN
and NNN pairs respectively, counting each bond once and
once only. Both exchange couplings are assumed to be
antiferromagnetic here (i.e., J1 > 0 and J2 > 0), and
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henceforth the energy scale is set by putting J1 = 1. We shall
also only be concerned here with the case � � 0.

The model has two types of classical ground state (GS),
namely a z-aligned state for � > 1 and an xy-planar-aligned
state for 0 < � < 1. Since all directions in the xy-plane
in spin space are equivalent, we may choose the direction
arbitrarily for the xy-planar-aligned state to be the x-direction,
say. Both of these z-aligned and x-aligned ground states
further divide into a Néel (π, π ) state and collinear stripe states
(columnar stripe (π, 0) and row stripe (0, π )). There is clearly
a symmetry under the interchange of rows and columns, and
hence we only consider the columnar stripe state. The Néel
states are the classical GS for J2 < 1

2 J1, and the collinear
stripe states are the classical GS for J2 > 1

2 J1. The (first-
order) classical phase transition between these states of perfect
classical LRO occurs precisely at J c

2 = 1
2 J1.

3. The coupled cluster method

We now briefly describe the CCM formalism. For further
details interested readers are referred, for example, to [2–4]
and references cited therein.

In order to use the CCM the first step is always the
choice of a normalized model (or reference) state |�〉 which
is required to act as a cyclic vector (or, more physically, as
a generalized vacuum state) with respect to a complete set of
mutually commuting multi-configurational creation operators,
C+

I ≡ (C−
I )† that need to be chosen simultaneously. The index

I here is a set-index that gives a complete labelling of the
many-particle configuration created in the state C+

I |�〉. The
requirements on {|�〉; C+

I } are that any many-particle state can
be exactly decomposed as a unique linear combination of the
states {C+

I |�〉}, together with the conditions,

〈�|C+
I = 0 = C−

I |�〉 ∀I �= 0; C+
0 ≡ 1, (2)

[C+
I , C+

J ] = 0 = [C−
I , C−

J ]. (3)

The exact many-body gs ket and bra states, whose
solutions we seek via the CCM calculation at hand, satisfy the
respective Schrödinger equations,

H |�〉 = E |�〉, (4a)

〈�̃|H = E〈�̃|, (4b)

respectively, with the normalization defined by 〈�̃|�〉 = 1
(i.e., with 〈�̃| = (〈�|�〉)−1〈�|), and with |�〉 itself satisfying
the intermediate normalization condition 〈�|�〉 = 1 =
〈�|�〉. In terms of the set {|�〉; C+

I }, the CCM now employs
an exponential parametrization for the exact gs ket energy
eigenstate,

|�〉 = eS|�〉, S =
∑

I �=0

SI C+
I , (5a)

that lies at the heart of the method. Its counterpart for the exact
gs bra energy eigenstate is chosen as

〈�̃| = 〈�|S̃e−S, S̃ = 1 +
∑

I �=0

S̃I C−
I . (5b)

The gs CCM correlation operators, S and S̃, contain the
real c-number correlation coefficients, SI and S̃I , that need
to be calculated. Clearly, once they are known, all other gs
properties of the many-body system can be derived from them.
In order to find them we simply insert the parametrizations (5a)
and (5b) into the Schrödinger equations (4a) and (4b), and then
project onto the complete sets of states 〈�|C−

I and C+
I |�〉,

respectively. Completely equivalently, we may simply demand
that the gs energy expectation value, H̄ ≡ 〈�̃|H |�〉, is
minimized with respect to the entire set {SI , S̃I }. In either case
we are easily led to the equations

〈�|C−
I e−S H eS|�〉 = 0; ∀I �= 0, (6a)

〈�|S̃e−S[H, C+
I ]eS|�〉 = 0; ∀I �= 0, (6b)

which are first derived using computer algebra and then
solved for the set {SI , S̃I } within specific truncation schemes
described below, by making use of parallel computing
routines [72]. Equation (6a) also shows that the gs energy at
the stationary point has the simple form

E = E({SI }) = 〈�|e−S H eS|�〉. (7)

It is important to realize that this bi-variational formulation
does not necessarily lead to an upper bound for E when the
summations for S and S̃ in (5a) and (5b) are truncated, due
to the lack of manifest Hermiticity when such approximations
are made. Nonetheless, one can prove [3] that the
important Hellmann–Feynman theorem is preserved in all such
approximations.

Equation (6a) represents a coupled set of nonlinear multi-
nomial equations for the c-number correlation coefficients
{SI }. The nested commutator expansion of the similarity-
transformed Hamiltonian,

e−S H eS = H + [H, S] + 1

2! [[H, S], S] + · · · , (8)

and the fact that all of the individual components of S in the
expansion of (5a) commute with one another by construction,
as in (3), together imply that each element of S in (5a) is linked
directly to the Hamiltonian in each of the terms in (8). Each of
the coupled equations (6a) is hence of Goldstone linked-cluster
type, which thereby guarantees that all extensive variables,
such as the energy, scale linearly with particle number, N .
Thus, at any level of approximation obtained by truncation
in the summations on the index I in (5a) and (5b), we may
always work safely from the outset in the limit N → ∞ of an
infinite system, as we do in all our calculations below. It is also
important to note that each of the linked-cluster equations (6a)
is actually of finite length when expanded, since the otherwise
infinite series of (8) will always terminate at a finite order,
provided only that each term in the Hamiltonian, H , contains
a finite number of single-particle destruction operators defined
with respect to the reference (vacuum) state |�〉, as in the case
of our Hamiltonian (1).

We turn now to the implementation of the CCM for
quantum spin systems, for which it is usually convenient to
take the classical ground states as our (initial) choices for the

4
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model state |�〉. Hence, we may choose here either a Néel state
or a collinear (columnar) stripe state for |�〉. Each of these can
be further sub-divided into a z-aligned choice or an xy-planar
(say, x-aligned) choice, which we expect to be appropriate for
the regions � � 1 and 0 � � � 1 respectively on purely
classical grounds. We present results in section 4 based on all
four of these classical ground states as choices for |�〉. In order
to implement the CCM computationally it is very convenient
to treat the spins on every lattice site in any chosen model state
|�〉 as equivalent. In order to do so we introduce a different
local quantization axis and a correspondingly different set
of spin coordinates on each site, so that all spins, whatever
their original orientations in |�〉 in the global spin-coordinate
system, align along the negative z-direction, say, in these local
spin coordinates. This can always be done by defining a
suitable rotation in spin space of the global spin coordinates at
each lattice site. Such rotations are canonical transformations
that leave the spin commutation relations unchanged. In
these local spin axes where the configuration indices I simply
become a set of lattice site indices, I → {k1, k2, . . . , km},
the generalized multi-configurational creation operators C+

I
are simple products of single spin-raising operators, C+

I →
s+

k1
s+

k2
· · · s+

km
, where s±

k ≡ sx
k ±isy

k , and (sx
k , sy

k , sz
k ) are the usual

SU(2) spin operators on lattice site k. For the quasiclassical
magnetically-ordered states that we calculate here, the order
parameter is the sublattice magnetization, M , which is given
within our local spin coordinates defined above as

M ≡ − 1

N
〈�̃|

N∑

k=1

sz
k |�〉. (9)

The CCM formalism is clearly exact if one includes all
spin configurations I in the expansions (5a) and (5b) of
the S and S̃ operators respectively. However, truncations
are necessary in practice. Based on a great deal of
previous experience, we usually employ the so-called LSUBn
approximation scheme for s = 1/2 quantum spin systems
(see [52] and references cited therein), and its so-called SUBn–
m counterpart for s = 1 systems (see [53] and references cited
therein). The LSUBn scheme is defined such that all possible
multi-spin-flip correlations over different locales on the lattice
defined by n or fewer contiguous lattice sites are retained at
the nth level of approximation. For the case of spins with
s = 1

2 , the multi-configurational creation operators, C+
I can

contain no more than one spin-raising operator s+
j for each

lattice site j . However, the number of fundamental LSUBn
configurations for s = 1 becomes appreciably higher than for
s = 1

2 , since each spin on each site j can now be flipped
twice by the spin-raising operators, so that in this case the
multi-configurational creation operators, C+

I can contain up
to two spin-raising operator s+

j for each lattice site j . Thus,

for systems with s > 1
2 it is more practical to use the SUBn–

m scheme, in which all correlations involving no more than
n spin-flips spanning a range of no more than m adjacent
lattice sites are retained. Clearly, for spins with s = 1, the
SUB2n–n scheme is fully equivalent to the LSUBn scheme.
More generally for spins with arbitrary spin quantum number
s, SUB2sn–n ≡ LSUBn. In order to keep the number of

Table 1. Numbers of fundamental configurations (� f.c.) retained in
the CCM SUBn–n approximation for the z-aligned states and the
planar x-aligned states of the s = 1 J X X Z

1 –J X X Z
2 model on the

square lattice.

z-aligned states Planar x-aligned states

� f.c. � f.c.

Scheme Néel Stripe Néel Stripe

SUB2–2 1 1 2 3
SUB4–4 15 21 31 57
SUB6–6 375 585 1085 2131
SUB8–8 17 864 29 411 61 904 12 3471

fundamental configurations from growing too quickly with
increasing level of approximation we set m = n, and thus we
have the SUBn–n scheme. The approximation clearly becomes
exact as n → ∞.

We note that, in general terms, both the LSUBn
and SUBn–m truncation schemes are systematic localized
approximation hierarchies in which the truncation indices are
physically related to the size of the clusters of spins on the
lattice for which the multi-spin correlations are explicitly
included. Their physical motivation (and eventual justification)
thus stems ultimately from the localized short-range nature
of the underlying Hamiltonian (which, in the present case,
involves just two-spin interactions at NN and NNN distances
apart only). The maximum number of spins correlated in
such clusters is n in both cases. By contrast, the SUBn
scheme (which is formally equivalent to the SUBn–m scheme
in the limit m → ∞) explicitly correlates all clusters of spins
involving no more than n spin-flips, regardless of the spatial
separations of the spins within the correlated clusters. It is
important to note however that in all CCM approximations
(including the LSUBn and SUBn–m schemes) each correlated
cluster configuration retained within the correlation operator
S of (5a) is actually counted an arbitrarily large number of
times due to the exponentiated form in which the operator
S appears in the parametrization (5a). It is precisely the
exponential form that guarantees the proper counting of
arbitrary multiples, at different positions on the lattice, of each
configuration (and all products of such multiples for different
configurations) retained in S, considered as independent
excitations. Thus, even though, for example, the LSUBn and
SUBn–m truncation schemes are motivated by the inclusion of
the explicit correlations within localized clusters of spins only
up to a given size, every approximation includes configurations
in which an arbitrary number of spins (up to all N → ∞
spins) are correlated, albeit as (properly counted) products of
independent sub-clusters up to a given finite size.

Table 1 shows the number of fundamental SUBn–n
configurations for the z-aligned and planar x-aligned states
in the Néel and striped phases. We see that the number of
fundamental configurations for the planar model state at the
SUB8–8 level of approximation is 61904 for the Néel phase
and 123471 for the stripe phase. The intensive calculations
required at even this very high order of approximation
are easily practicable with relatively modest supercomputing
resources. Thus, for example, we employed 200 processors
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Figure 1. Extrapolated CCM SUBn–n results using the z-aligned (a) and planar x-aligned (b) states for the gs energy, E /N , for the Néel and
stripe phases of the s = 1 J X X Z

1 –J X X Z
2 model. The SUBn–n results are extrapolated to the limit n → ∞ using the sets n = {2, 4, 6, 8} for

both the z-aligned and planar x-aligned states. The NN exchange coupling J1 = 1. The meaning of the Emax points shown is described
in the text.

simultaneously to execute the SUB8–8 calculations using the
planar x-aligned collinear stripe state as model state, and with
this number of processors it took about 6 h to solve the CCM
equations (6a) and (6b) at this level of approximation for each
value of the anisotropy parameter � in the Hamiltonian (1).

Clearly, the last step in our calculations is to extrapolate
the approximate SUBn–n results to the exact, n → ∞, limit.
We use here for the extrapolations of the raw SUBn–n data
the same well-tested scaling laws as we used previously in our
studies of the J1–J ′

1–J2 model for both the s = 1
2 case [52] and

the s = 1 case [53], as well as for the s = 1
2 version of the

present model [1]. Thus, the scaling law used for the gs energy
per spin, E/N , is

E/N = a0 + a1n−2 + a2n−4, (10)

and that for the staggered magnetization, M , is

M = b0 + n−0.5
(
b1 + b2n−1

)
. (11)

In order to have a robust and stable fit to any fitting
formula that contains m unknown parameters, it is well known
that it is desirable to have at least (m + 1) data points (the so-
called m + 1 rule). Both of our scaling laws (10) and (11)
contain m = 3 unknown parameters to be determined, and
in all cases we have SUBn–n data sets with n = {2, 4, 6, 8}.
In all our results presented below the SUBn–n results are
extrapolated to the limit n → ∞ using the sets with n =
{2, 4, 6, 8} for both the z-aligned and planar x-aligned states.
However, we have also extrapolated E/N and M using the sets
n = {4, 6, 8} and n = {2, 4, 6}. In all cases they lead to very
similar results, thereby adding credence to their validity and
stability. We also note that for the corresponding s = 1/2
model we could perform LSUBn ≡ SUBn–n approximation
calculations for n = {2, 4, 6, 8, 10}. This enabled us to
perform extrapolations using the sets n = {2, 4, 6, 8} and n =
{2, 4, 6, 8, 10} as well as the preferred set n = {4, 6, 8, 10}.
Gratifyingly, all sets yielded very similar extrapolated results,
even near phase boundaries and the quantum triple point,
which gives us great confidence in the accuracy and robustness
of our extrapolation scheme.

4. Results

Figure 1 shows the extrapolated CCM results for the gs energy
per spin, E/N , as a function of J2 for various values of �,
using both the z-aligned and planar x-aligned model states.
For each value of � two curves are shown, one (for smaller
values of J2) using the Néel state, and the other (for larger
values of J2) using the stripe state as CCM model state. As
has been discussed in detail elsewhere [3, 4, 63], the coupled
sets of LSUBn equations (6a) have natural termination points
(at least for values n > 2) for some critical value of a
control parameter (here the anisotropy, �), beyond which no
real solutions to the equations exist. Thus, for each set of
calculations based on one of the four CCM model states used,
the Emax points shown in figure 1 are either those natural
termination points described above for the highest (SUB8–8)
level of approximation we have implemented, or the points
where the gs energy becomes a maximum should the latter
occur first (i.e., as one approaches the termination point). The
advantage of this usage of the Emax points is that we do
not then display gs energy data in any appreciable regimes
where SUBn–n calculations with very large values of n (higher
than can feasibly be implemented) would not have solutions,
because of having terminated already.

All of the curves such as those shown in figure 1
illustrate very clearly that the corresponding pairs of gs
energy curves (for the same values of �) for the Néel
and stripe phases cross one another, for both the z-
aligned (figure 1(a) for all values � > 1) and the x-
aligned (figure 1(b) for all values 0 � � < 1) cases.
The crossings occur with a clear discontinuity in slope, which
is completely characteristic of a first-order phase transition,
exactly as observed in the classical (i.e., s → ∞) case. Unlike
in the s = 1

2 version of this model that we studied earlier [1],
there is no indication at all in the present s = 1 case of any
intermediate paramagnetic phase emerging for any values of
the parameters J2 and �. Furthermore, the direct first-order
phase transition, so indicated by our results for the gs energy,
between the quasiclassical Néel-ordered and collinear stripe-
ordered phases, in both the z-aligned and planar x-aligned
cases, occurs for all values of � � 0 very close to the classical

6
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Figure 2. Extrapolated CCM SUBn–n results using the z-aligned (a) and planar x-aligned (b) states for the gs staggered magnetization, M ,
for the Néel and stripe phases of the s = 1 J X X Z

1 –J X X Z
2 model. The SUBn–n results are extrapolated to the limit n → ∞ using the sets

n = {2, 4, 6, 8} for both the z-aligned state and the planar x-aligned states. The NN exchange coupling J1 = 1.

phase boundary J c
2 = 1

2 , the point of maximum (classical)
frustration.

We show in figure 2 corresponding indicative sets of
CCM results, based on the same four model states, for the
gs order parameter (namely, the staggered magnetization), to
those shown in figure 1 for the gs energy. The staggered
magnetization data completely reinforce the phase structure of
the model as deduced above from the gs energy data.

Thus, let us now denote by Mc the quantum phase
transition point deduced from curves such as those shown
in figure 2, where Mc is generically defined to be either
(a) the point where corresponding pairs of CCM staggered
magnetization curves (for the same value of �), based on the
Néel and stripe model states, intersect one another if they do
so at a physical value M � 0; or (b) if they do not so intersect
at a value M � 0, the two points where the corresponding
values of the staggered magnetization go to zero. Clearly, in
this generic scenario, case (a) corresponds to a direct phase
transition between the Néel and stripe phases, which will
generally be first order if the intersection point has a value
M �= 0 (and, only exceptionally, second order, if the crossing
occurs exactly at M = 0). On the other hand, case (b)
corresponds to the situation where the points where the LRO
vanishes for both quasiclassical (i.e., Néel-ordered and stripe-
ordered) phases are indicative of a phase transition from each
of these phases to some intermediate magnetically-disordered
phase. A detailed discussion of this order parameter criterion
for a phase transition and its relation to the stricter energy
crossing criterion has been given elsewhere [69].

It is clear from figures 2(a) and (b) that case (b) above
never occurs for the present spin-1 model for any values of the
anisotropy parameter � or for any values of the NNN exchange
coupling J2, unlike in the s = 1

2 version of this model that we
studied earlier [1].

By putting together data of the sort shown in figures 1
and 2 we can now deduce the gs phase diagram of our system
from our CCM calculations based on the four model states with
quasiclassical antiferromagnetic LRO that we have employed.
Figure 3 shows the zero-temperature gs phase diagram of
the 2D s = 1 J X X Z

1 –J X X Z
2 model on the square lattice for

the z-aligned and planar x-aligned states, as obtained from

Figure 3. Extrapolated CCM SUBn–n results using the z-aligned
and planar x-aligned states for the ground-state phase diagram of the
s = 1 J X X Z

1 –J X X Z
2 anisotropic Heisenberg model on the square

lattice, for the NN exchange coupling J1 = 1. The SUBn–n results
for the energy per spin and the staggered magnetization are
extrapolated to the limit n → ∞ using the sets n = {2, 4, 6, 8} for
both the z-aligned and planar x-aligned model states. Mc ≡
magnetization critical point, defined in the text. Emeet denotes the
crossing point of the CCM energy curves for the same value of �
based on the Néel-ordered and collinear stripe-ordered model states.

our extrapolated results for both the gs energy and the gs
order parameter. The completely independent results from
both the energy criterion and the order parameter criterion for
the phase transition give extremely similar positions for the
phase boundary, as one can observe from figure 3. Note that
the results from using the order parameter criterion become
increasingly inaccurate for large values of �, and this is why
we show them in figure 3 only out to � � 2. The reason for
this is simple. Thus, as � → ∞, the order parameters M → 1
for both the Néel-ordered and collinear stripe-ordered phases,
and it becomes increasingly difficult to determine the point
where they cross, since the angle of their crossing becomes
vanishingly small. This effect can clearly be seen in figure 2(a),
where it has clearly become acute even for values of � as
small as about 2. On the other hand, the energy criterion
correspondingly becomes more accurate as � → ∞, as one
may observe from figure 1(a). Thus, figure 3 clearly shows

7



J. Phys.: Condens. Matter 20 (2008) 415213 R F Bishop et al

that the phase boundary approaches the classical line J c
2 = 0.5

as � → ∞, as expected in this Ising-like limit.
Our results certainly provide very clear and consistent

evidence that there exists no intermediate phase. Thus, the
curves for the order parameters of the Néel and stripe phases
always meet at a finite value and the corresponding curves for
the gs energies of the two phases intersect with a discontinuity
in slope, for both the z-aligned and planar x-aligned states, for
all values of the anisotropy parameter �. All of the evidence
clearly points towards a first-order phase transition between the
two phases.

We note also that the z-aligned and xy-planar-aligned
phases meet precisely at the isotropic point � = 1, just as in
the classical case, and exactly as expected. However, this does
provide a consistency check on our independent numerical
calculations for the two phases. The case � = 1 obviously
reproduces the usual (isotropic) J1–J2 model. Thus, at � = 1,
we find J c

2 = 0.55 ± 0.01 which, very encouragingly, is the
same value we found [53] for the s = 1 J1–J ′

1–J2 model in the
spatially isotropic limiting case when J ′

1/J1 = 1. We also note
that in the present spin-1 quantum model, the isotropic point
� = 1 is precisely the point at which the boundary between
the two quasiclassical phases deviates most from its classical
position at J c

2 = 1
2 for all values of � � 0. Our calculations

also indicate that at the isotropic XY point of the model (i.e.,
where � = 0) the phase boundary is at J c

2 = 0.50 ± 0.01.

5. Discussion

Our results have clearly shown in detail how the quantum
fluctuations present in the spin-1 J1–J2 model on the infinite
square lattice are diminished by varying the spin anisotropy
parameter � away from the Heisenberg isotropic point � =
1 in either direction. This is precisely as was observed
previously [1] for the spin- 1

2 version of the same model, and as
was to be expected. However, unlike what would be predicted
by lowest-order (or linear) spin-wave theory (LSWT) [6], for
example, we can now conclude with confidence from our
results that no such intermediate disordered phase as the one
that we observed in the spin- 1

2 version of this model between
the two quantum triple points at (�c = −0.10±0.15, J c

2 /J1 =
0.505±0.015) and (�c = 2.05±0.15, J c

2 /J1 = 0.530±0.015),
exists for the spin-1 version, for any values of the parameters
J2/J1 and �.

In the context of a spin-wave theory (SWT) treatment of
the isotropic J1–J2 model on the square lattice, LSWT predicts
that quantum fluctuations can destabilize the classical GS with
LRO, even at large values of the spin quantum number s, for
values of the frustration parameter J2/J1 around 0.5. For
the spin- 1

2 case the range of values, αc1 < J2/J1 < αc2 ,
for which a magnetically-disordered phase thereby occurs is
predicted by LSWT to be given by αc1 ≈ 0.38 and αc2 ≈ 0.52.
These values may be compared to our own predictions [1] of
αc1 = 0.44 ± 0.01 and αc2 = 0.59 ± 0.01. For the spin-1
case LSWT predicts a narrower, but still non-vanishing, strip
of disordered intermediate phase in a range with αc1 ≈ 0.47
and αc2 ≈ 0.501, whereas we predict with confidence that the
disordered phase simply does not exist as a GS in this case.

The discrepancy between our results and those of LSWT
for the spin-1 case are undoubtedly due to the shortcomings
of LSWT. Thus, while LSWT can work reasonably well in the
absence of frustration (e.g., for the isotropic J1–J2 model here
when J2 = 0, that represents the Heisenberg model with only
NN interactions), in the presence of frustration it consistently
overestimates the effects of quantum fluctuations. This effect
worsens as the frustration (here measured by the ratio J2/J1)
increases.

Thus, Igarashi [73] has shown explicitly for the J1–J2

model by going to higher orders in SWT (i.e., by calculating
higher-order terms in the 1/s power expansion), that while the
series seems to converge for values J2/J1 � 0.35, the second-
order corrections grow so large for values J2/J1 � 0.4 that
no prediction based on LSWT, or even on higher-order SWT,
in this region (e.g., about the appearance of an intermediate
magnetically-disordered phase near J2/J1 ≈ 0.5) should be
relied upon. Furthermore, he showed that the effects of the
higher-order correction terms to LSWT make the Néel-ordered
state more stable than predicted by LSWT.

Relatively little attention has been paid by other authors
to the (pure, isotropic) J1–J2 model at higher values of the
spin quantum number, s > 1

2 . We note, however, that Cai
et al [74] have also recently postulated the possible existence
of an intermediate phase between the quasiclassical Néel-
ordered and collinear stripe-ordered phases for the spin-1
model. More specifically, they hypothesize an intermediate
valence-bond solid (VBS) ground state (GS) for the spin-1
isotropic J1–J2 model at or near the point of maximal classical
frustration where J2/J1 = 0.5. Their evidence is indirect
and is based on a trial variational state of VBS type, which
is an exact GS of a related spin-1 model Hamiltonian, and on a
pseudopotential approach to extend it to the actual spin-1 J1–J2

model. They express the dual hopes that this trial state might
capture the main character of the disordered phase that they
thereby predict for the fully frustrated case, and that accurate
numerical methods, such as those considered here, might verify
the existence of this postulated intermediate phase. Such
variational analyses, based on physically motivated trial states,
are always of interest, but have a very chequered history of
success in the field of highly correlated spin– and electron–
lattice systems. In the present case we stress again that our
own detailed numerical analysis provides no evidence at all for
the existence of such an intermediate magnetically-disordered
VBS phase as postulated by Cai et al [74].

In the same context, we note too that in earlier work Read
and Sachdev [75] have applied a large-N expansion technique
based on symplectic Sp(N) symmetry to the isotropic J1–
J2 model. They found that the method, which can itself be
regarded as akin to a 1/s expansion, predicts an intermediate
phase (with VBS order) for smaller values of s, but that this
phase disappears for larger values of s where they predict
instead a first-order transition between the Néel and stripe
phases. All of these qualitative results for the pure J1–J2 model
are in accord with our quantitative predictions.

We note that the results presented here for the spin-
anisotropic spin-1 J X X Z

1 –J X X Z
2 model are also fully consistent

with our own previous results [53] for the spatially-anisotropic
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spin-1 J1–J ′
1–J2 model discussed in section 1 above, for which

we also found no evidence for an intermediate disordered phase
between the quasiclassical Néel and collinear stripe phases
with LRO. However, whereas for the spin-1 J1–J ′

1–J2 model
we found strong evidence for a quantum tricritical point at
(J ′

1/J1 ≈ 0.66, J2/J1 ≈ 0.35) where a line of second-order
phase transitions between the Néel-ordered and the collinear
stripe-ordered states (for J ′

1/J1 � 0.66) meets a line of first-
ordered phase transitions between the same two states (for
J ′

1/J1 � 0.66), we find for the present spin-1 J X X Z
1 –J X X Z

2
model that the phase transition between these two states is first
order for all values � � 0. Clearly, these two sets of results
are in complete agreement with one another at their common
point of overlap, when J ′

1 = J1 and � = 1.
At the XY isotropic point (� = 0) of the present spin-1

J X X Z
1 –J X X Z

2 model we predict that the phase boundary occurs
at a value J c

2 (0) = 0.50 ± 0.01. It is interesting to note that
our previous results for the spin- 1

2 version of the model [1]
showed a quantum triple point (QTP) at (�c = −0.10±0.015,
J c

2 = 0.505 ± 0.015). Clearly our results for this spin- 1
2 case

are consistent with this lower QTP occurring exactly at the XY
isotropic point (� = 0) and also at the point of maximum
classical frustration, J2 = 1

2 . Similarly, in the present spin-
1 case our results are consistent with the phase boundary at
the XY isotropic point also occurring at the point J2 = 1

2 . It
would seem likely, therefore, that for both the cases of spin-
1
2 and spin-1 particles the corresponding quantum J X X

1 –J X X
2

model has a special behaviour at the point J2/J1 = 1
2 where the

classical frustration is greatest. Our results indicate that a more
detailed investigation of this case might, therefore, be worth
undertaking for general values of the spin quantum number s.

Although there is very little other accurate numerical work
for the present model against which to make comparisons,
there have been several previous detailed comparisons,
for example, of CCM results with those from the exact
diagonalization (ED) of finite spin–lattices for some particular
models. One such example [65] is the spin- 1

2 J–J ′ (or
zigzag) model on the square lattice which contains two kinds
of NN isotropic Heisenberg interactions, of strength J and J ′
respectively, such that each square plaquette contains three J -
bonds and one J ′-bond, with the J ′-bonds arranged in a regular
zigzag fashion such that every lattice site on the square lattice
is joined to only one J ′-bond. An alternative but equivalent
description of the model is that it interpolates between a
honeycomb and a square lattice, such that the J -bonds join NN
lattice sites on the honeycomb lattice, and the J ′-bonds join
sites across only one of the main diagonals of each hexagon,
such that when J = J ′ the model is equivalent to the NN
isotropic Heisenberg model on the square lattice.

ED calculations were performed for the above model [65]
for lattices with up to N = 32 sites. In general terms it was
found that the CCM results for the model at attainable levels
of implementation (namely, using the LSUBn approximation
with n � 8 agree well with the extrapolated (N → ∞) ED
data. The CCM is particularly good, however, at describing
both the dimerized and the helical gs phases that this system
can support. For the latter phase the ED results lie appreciably
above those from the CCM. This is because the energies for

the small lattices able to be considered do not fit well to
the known theoretical finite-size scaling law in this regime.
It is no surprise that finite-size effects for systems with an
incommensurate helical spin structure are larger than for
systems with Néel order or that are ordered with dimerized spin
pairs.

Similar conclusions were also drawn for comparisons of
CCM and ED results for extensions of the above spin- 1

2 J–
J ′ model to both (a) the anisotropic JX X Z –J ′

X X Z model [57]
where both bonds contain an Ising anisotropy of precisely the
sort considered in the present paper; and (b) the case where
the spin quantum number s > 1

2 [68]. For the latter case of the
spin-1 J–J ′ model, calculations were performed using both the
CCM in the SUBn–n scheme with n � 6 and the ED technique
on lattices of sizes N � 20. Again, the resulting finite-size
ED extrapolations remained quite poor, and only allowed some
qualitative conclusions to be drawn, whereas results from the
CCM were seen to be much more robust and more reliable. In
no case, however, did the CCM and ED results conflict with
each other.

Another model where ED and CCM results have been
compared is the pure (isotropic) spin- 1

2 J1–J2 model on the
square lattice [76]. Again, the ED results (with N � 32) were
found to provide a good qualitative check of the CCM data for
LSUBn calculations performed with n � 8. Finally, for the
spin- 1

2 version of the present anisotropic J X X Z
1 –J X X Z

2 model,
we [77] have also compared the CCM results with those from
ED calculations on finite-sized lattices of size N = 36 = 6×6
sites (with periodic boundary conditions imposed). In this case
too the ED data are best used to complement the CCM results.
On the basis of all the above evidence we expect that the same
will hold true for the spin-1 version of the model studied here.
Since the number of basis states increases roughly as 3N for
the spin-1 case, by comparison with 2N for the spin- 1

2 case,
ED calculations for the present model would be limited to
lattices of sizes N = 16 and 20. The next biggest lattice
that preserves the full lattice symmetry has N = 26 sites
in this case, and an ED calculation of this size for the spin-
1 model is probably beyond the limits of presently available
computing power. With only such limited data the ED finite-
size extrapolation would again be bound to remain poor, as
seen in the previous work cited above, and we fully expect that
the CCM results would again prevail even if ED results were
available for the present model.

Finally, we note that our analysis and conclusions have
relied heavily on two of the unique strengths of the CCM,
namely its ability to deal with highly frustrated systems as
easily as unfrustrated ones, and its use from the outset of
infinite lattices. These, in turn, lead to its ability to yield
accurate predictions for the locations of phase boundaries. Our
own results for the gs energy and staggered magnetization
provide a set of independent checks that lead us to believe
that we now have a self-consistent and coherent description
of these challenging anisotropic and frustrated J X X Z

1 –J X X Z
2

systems for both the spin- 1
2 and spin-1 cases.
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[40] Schollwöck U, Richter J, Farnell D J J and Bishop R F (ed)

2004 Quantum Magnetism (Springer Lecture Notes in
Physics vol 645) (Berlin: Springer)

[41] Manousakis E 1991 Rev. Mod. Phys. 63 1
[42] Richter J, Schulenburg J and Hoecker A 2004 Quantum

Magnetism (Springer Lecture Notes in Physics vol 645)
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